Abstract

Muscle regeneration depends on satellite cells (SCs), quiescent precursors that, in consequence of injury or in pathological states such as muscular dystrophies, activate, proliferate, and differentiate to repair the damaged tissue. A subset of SCs undergoes self-renewal, thus preserving the SC pool and its regenerative potential. Unacylated ghrelin (UnAG) is a circulating hormone that protects muscle from atrophy, promotes myoblast differentiation, and enhances ischemia-induced muscle regeneration. Here we show that UnAG increases SC activity and stimulates Par polarity complex/p38-mediated asymmetric division, fostering both SC self-renewal and myoblast differentiation. Because of those activities on different steps of muscle regeneration, we hypothesized a beneficial effect of UnAG in mdx dystrophic mice, in which the absence of dystrophin leads to chronic muscle degeneration, defective muscle regeneration, fibrosis, and, at later stages of the pathology, SC pool exhaustion. Upregulation of UnAG levels in mdx mice reduces muscle degeneration, improves muscle function, and increases dystrophin-null SC self-renewal, maintaining the SC pool. Our results suggest that UnAG has significant therapeutic potential for preserving the muscles in dystrophies. Stem Cells 2017;35:1733-1746.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.