Abstract
This paper investigates the fuzzy position/force hybrid control for a class of 5-degree-of-freedom (DOF) redundantly actuated parallel robots. The position control law is designed based on the proportional-integral-differential (PID) for the 5-DOF redundantly actuated parallel robot. The fuzzy proportional-integral (PI) redundant actuation force control law is designed based on the position/force hybrid control structure for the 5-DOF redundantly actuated parallel robot. The optimum driving force is obtained in the presence of interference, and the force tracking performance of the fuzzy PI controller is better than the conventional PI controller under the interference condition. Based on the fuzzy position/force hybrid controller, the tracking performance of the closed-loop system for the 5-DOF redundantly actuated parallel robot is improved by using the fuzzy position/force hybrid controller and the interference is eliminated effectively in the control system design. Finally, the co-simulation results of ADAMS and MATLAB/SIMULINK are given to show the effectiveness and advantages of the proposed methods compared with the conventional PI controller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Control, Automation and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.