Abstract

Automatic summarization methods are currently needed in many different contexts. The extractive multi-document summarization problem tries to cover the main content of a document collection and to reduce the redundant information. The best way to address this task is through a multi-objective optimization approach. The result of this approach is a set of non-dominated solutions or Pareto set. However, since only one summary is needed, the Pareto front must be reduced to a single solution. For this, several methods have been considered, such as the largest hypervolume, the consensus solution, the shortest distance to the ideal point, and the shortest distance to all points. The methods have been tested using datasets from DUC, and they have been evaluated with ROUGE metrics. The results show that consensus solution achieves the best average values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.