Abstract

We consider dimension 3 vector fields (resp. diffeomorphisms), in a neighborhood of a hyperbolic saddle. We give a criterion to decide if the imaginary part (resp. the angular part) of the eigenvalues of the linear part of the dynamical system at the fixed point is a topological conjugacy invariant if we assume that the conjugacy maps a non-spiraling curve onto another one. We apply this result to the situation of diffeomorphisms and vector fields with a quasi-transversal homoclinic orbit. To cite this article: E. Dufraine, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 53–58

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.