Abstract
A two-parameter family of invariant almost-complex structures J α,c is given on the homogeneous space M × M’ = U(n + 1)/U(n) × U(p + 1)/U(p); all these structures are integrable. We consider all invariant Riemannian metrics on the homogeneous space M × M’. They depend on five parameters and are Hermitian with respect to some complex structure J α,c . In this paper, we calculate the Ricci tensor, scalar curvature, and obtain estimates of the sectional curvature for any metric on M × M’. All the invariant metrics of nonnegative curvature are described. We obtain the extremal values of the scalar curvature functional on the four-parameter family of metrics g α,c,λ,λ’;1 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.