Abstract
Umifenovir, a broad-spectrum nonnucleoside antiviral drug, has a promising efficacy against coxsackievirus B4 (CVB4) infection, but its mechanism remains unclear. CVB4 is a common human single-stranded RNA virus that belongs to the Picornaviridae family and the Enterovirus genus. Enterovirus can cause severe diseases, such as meningitis, myocarditis, pancreatitis, insulin-dependent diabetes, and several other diseases, in both adults and children. We have previously demonstrated the critical role of interleukin 10 (IL-10) in promoting CVB4 infection and the downregulation of IL-10 by umifenovir. To further explore the underlying mechanisms of umifenovir, we characterized the epigenetic regulation of IL-10 in IL-10 knockout RAW264.7 cells and a BALB/c mouse splenocyte model. Mechanistically, we found that umifenovir inhibited CVB4-activated IL-10 by enhancing the methylation level of the repressive histones H3K9me3 and H3K27me3 while reducing the acetylation level of the activating histone H3K9ac in the promoter region of the IL-10 gene. Furthermore, using a chromosome conformation capture approach, we discovered that CVB4 infection activated the IL-10 gene by forming an intrachromosomal interaction between the IL-10 gene promoter and an intronic enhancer of the downstream MK2 (mitogen-activated protein kinase [MAPK]-activated protein kinase 2 [MAPKAPK2]) gene, a critical component of the p38-MAPK signaling pathway, which is required for IL-10 gene expression. However, umifenovir treatment abolished this spatial conformation and chromatin interaction, thus reducing the continuous expression of IL-10 and subsequent CVB4 replication. In conclusion, this study reveals a novel epigenetic mechanism by which umifenovir controls CVB4 infections, thus laying a theoretical foundation for therapeutic use of umifenovir. IMPORTANCE Viral infections are major threats to human health because of their strong association with a variety of inflammation-related diseases, especially cancer. Many antiviral drugs are performing poorly in treating viral infections. This is probably due to the immunosuppressive effect of highly expressed IL-10, which is caused by viral infection. Umifenovir is a broad-spectrum antiviral drug. Our recent studies showed that umifenovir has a significant inhibitory effect on CVB4 infection and can reduce IL-10 expression caused by CVB4. However, another antiviral drug, rupintrivir, showed good antiviral activity but had no effect on the expression of IL-10. This suggests that the regulation of IL-10 expression is a key part of the antiviral mechanism of umifenovir. Therefore, due to the dual function of the inhibition of CVB4 replication and the regulation of immune antiviral pathway, the mechanism of umifenovir is of great value to study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.