Abstract
Thermo-responsive micelles were prepared from brush-like block copolymers of proline-derived norbornene and macromonomers bearing oligo(lactide) groups. The brush-like polymers with moderate molecular weights were synthesized by the ring-opening metathesis block copolymerization of a proline-functionalized norbornene (1) with norbornene macromonomers bearing oligo(lactide) groups using Umicore M31 as a catalyst. The proline-functionalized polynorbornene [poly(1)] exhibited the lower critical solution temperature (LCST) at 18 °C. Phase separation was reversible on heating and cooling without hysteresis. Poly(1) featured amphiphilic character, it self-assembled to form micelles in water at temperatures below the LCST, and aggregation of micelles was observed above the LCST. The LCST of the block copolymers increased with increasing percentage of the branched oligo(lactide) component, suggesting that the phase transition temperatures are tunable with respect to the monomer composition. The block copolymers self-assembled into micelles below the LCST, and further aggregated into larger particles, presumably due to dehydration at the corona, at temperatures above the LCST. The block copolymers also showed the potential to self-assemble into a variety of shapes determined by the amphiphilic balance of the block components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.