Abstract

AbstractBatesian mimicry involves both spatial and temporal interactions between model, mimic and predator. Fundamental predictions in Batesian mimicry involve space, time and abundance; specifically, that the model and mimic are found in sympatry and that protection for the mimic is increased when predators interact with the model first and more frequently. Research has generally confirmed these predictions for Batesian mimicry at large spatial scales, with recent work on two nymphalid butterflies in western North America, the mimic Limenitis lorquini (Boisduval, 1852) and its model Adelpha californica (Butler, 1865) in western North America indicating that the mimic generally has lower abundance and emerges later in the season among widely separated populations in the California Coast Ranges and Sierra Nevada. However, no studies have investigated model–mimic dynamics at small scales in the temperate zone to test whether temporal habitat use and movements conform to predictions. If mimicry is as important a part of the biology of these temperate species as it is for their tropical counterparts, then in addition to emerging later and being less abundant overall, the mimic should be less widespread, should be less abundant in each habitat and should move less among available habitats. Our results using mark–release–recapture methods confirm these predictions and indicate that the mimic, L. lorquini, is enjoying an umbrella of protection against habitat specialist and generalist predators alike.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call