Abstract

Catch-up growth in infants who are small for gestational age (SGA) is a risk factor for the development of cardiometabolic diseases in adulthood. The basis and mechanisms underpinning catch-up growth in newborns who are SGA are unknown. To identify umbilical cord miRNAs associated with catch-up growth in infants who are SGA and study their relationship with offspring's cardiometabolic parameters. miRNA PCR panels were used to study the miRNA profile in umbilical cord tissue of five infants who were SGA with catch-up (SGA-CU), five without catch-up (SGA-nonCU), and five control infants [appropriate for gestational age (AGA)]. The miRNAs with the smallest nominal P values were validated in 64 infants (22 AGA, 18 SGA-nonCU, and 24 SGA-CU) and correlated with anthropometric parameters at 1 (n = 64) and 6 years of age (n = 30). miR-501-3p, miR-576-5p, miR-770-5p, and miR-876-3p had nominally significant associations with increased weight, height, weight catch-up, and height catch-up at 1 year, and miR-374b-3p, miR-548c-5p, and miR-576-5p had nominally significant associations with increased weight, height, waist, hip, and renal fat at 6 years. Multivariate analysis suggested miR-576-5p as a predictor of weight catch-up and height catch-up at 1 year, as well as weight, waist, and renal fat at 6 years. In silico studies suggested that miR-576-5p participates in the regulation of inflammatory, growth, and proliferation signaling pathways. Umbilical cord miRNAs could be novel biomarkers for the early identification of catch-up growth in infants who are SGA. miR-576-5p may contribute to the regulation of postnatal growth and influence the risk for cardiometabolic diseases associated with a mismatch between prenatal and postnatal weight gain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call