Abstract

Human umbilical cord mesenchymal stem cells (UC-MSCs) transplantation has been shown to ameliorate intracerebral hemorrhage (ICH) in animal and clinical studies. We previously reported an easy one-step method to induce UC-MSCs into neurospheres with much enhanced neurogenic and angiogenic potential. In the present study, we further evaluated the neuro-protective effects of these UC-MSCs derived neurospheres (UC-MSCs-NS) using a murine collagenase induced ICH model. We compared the effects of UC-MSCs or UC-MSCs-NS transplantation at two different time-points: 3 h after ICH induction (early transplantation) or three days after ICH induction (delayed transplantation). The results showed that UC-MSCs exhibited favorable effects at both time-points whereas UC-MSCs-NS early delivery led to increased cell apoptosis, exacerbated brain edema, enlarged ICH volume and deteriorated neurological function. In vivo inflammatory cytokine analysis indicated UC-MSCs transplantation was able to attenuate the acute phase secretion of inflammatory cytokines TNF-α and IL-1β whereas UC-MSCs-NS immediate transplantation led to increased levels of these cytokines. However, long-term follow-up experiment showed delayed UC-MSCs-NS transplantation was superior to UC-MSCs transplantation alone in terms of increased neurogenic reconstitution. Our results suggest both UC-MSCs and UC-MSCs-NS can exert favorable effects in ICH therapy but the infusion of UC-MSCs-NS should avoid the super-early phase of ICH. We believe UC-MSCs derived neurospheres should be further exploited for chronic refractory neurological disorders such as chronic phase of stroke and various neurodegenerative disorders such as Alzheimer’s disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.