Abstract

Abstract The Ulungarat Basin of Arctic Alaska is a unique exposed stratigraphic record of the mid-Paleozoic transition from the Romanzof orogeny to post-orogenic rifting and Ellesmerian passive margin subsidence. The Ulungarat Basin succession is composed of both syn-rift and post-rift deposits recording this mid-Paleozoic transition. The syn-rift deposits unconformably overlie highly deformed Romanzof orogenic basement on the mid-Paleozoic regional angular unconformity and are unconformably overlain by post-rift Endicott Group deposits of the Ellesmerian passive margin. Shallow marine strata of Eifelian age at the base of the Ulungarat Formation record onset of rifting and limit age of the Romanzof orogeny to late Early Devonian. Abrupt thickness and facies changes within the Ulungarat Formation and disconformably overlying syn-rift Mangaqtaaq Formation suggest active normal faulting during deposition. The Mangaqtaaq Formation records lacustrine deposition in a restricted down-faulted structural low. The unconformity between syn-rift deposits and overlying post-rift Endicott Group is interpreted to be the result of sediment bypass during deposition of the outboard allochthonous Endicott Group. Within Ulungarat Basin, transgressive post-rift Lower Mississippian Kekiktuk Conglomerate and Kayak Shale (Endicott Group) are older and thicker than equivalents to the north. North of Ulungarat Basin, deformed pre-Middle Devonian rocks were exposed to erosion at the mid-Paleozoic regional unconformity for ∼50 m.y., supplying sediments to the rift basin and broader Arctic Alaska rifted margin beyond. Although Middle Devonian to Lower Mississippian chert- and quartz-pebble conglomerates and sandstones across Arctic Alaska share a common provenance from the eroding ancestral Romanzof highlands, they were deposited in different tectonic settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call