Abstract
In this paper, an ultra-wideband terahertz metamaterial absorber is introduced based on a Snowflake Koch Fractal (SKF) dielectric loaded on a sheet of graphene. Instead of multilayered-graphene conventional structures, a single-layered non-structured graphene absorber is presented based on gradient width modulation and cavity method. The structure of the absorber is composed of four layers, which are upper SKF dielectric and metal film layer form two mirrors of an asymmetric Fabry-Perot cavity to confine terahertz electromagnetic (EM) waves. Full wave simulations demonstrate that the proposed structure is highly efficient whereas a 161% fractional bandwidth of over 0.9 absorbance is achieved under normal incident wave considering both TE and TM polarizations. The proposed structure is polarization insensitive yielding the same absorbance for both TE and TM polarizations. The absorbance and bandwidth of the structure is almost independent of altering the incident angle θ up to 60° and 30° for TM and TE polarizations, respectively. Avoiding graphene processing and simple shape geometry are the interesting advantages of this structure resulting in feasible fabrication. The proposed structure provides much greater absorbance bandwidth in comparison to previous works.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.