Abstract

We herein present a high-performance ultrawideband terahertz absorber with a silicon hemi-ellipsoid (SHE) on a monolayer graphene that is separated by a dielectric spacer from a bottom metal reflector. The constitution of the absorber, which includes dielectric-mode structures and unstructured monolayer graphene, can minimize undesired optical losses in metals and avoid graphene processing. The absorber achieved an ultrawide absorption bandwidth from 2 THz to more than 10 THz with an average absorption of 95.72%, and the relative bandwidth is 133%. The excellent absorption properties are owing to the presence of graphene and the shape morphing of the SHE, in which multiple discrete graphene plasmon resonances (GPRs) and continuous multimode Fabry-Perot resonances (FPRs) can be excited. By coupling the GPRs and FPRs, the absorption spectrum is extended and smoothed to realize an ultrawideband absorber. The incident angular insensitivity within 50° of the absorber is discussed. The results will shed light on the better performance of terahertz trapping, imaging, communication and detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.