Abstract

This work introduces new, stable, and broadband skin-equivalent semisolid phantoms for mimicking interactions of millimeter waves with the human skin and skin tumors. Realistic skin phantoms serve as an invaluable tool for exploring the feasibility of new technologies and improving design concepts related to millimeter-wave skin cancer detection methods. Normal and malignant skin tissues are separately mimicked by using appropriate mixtures of deionized water, oil, gelatin powder, formaldehyde, TX-150 (a gelling agent, widely referred to as "super stuff"), and detergent. The dielectric properties of the phantoms are characterized over the frequency band of 0.5-50GHz using a slim-form open-ended coaxial probe in conjunction with a millimeter-wave vector network analyzer. The measured permittivity results show excellent match with ex vivo, fresh skin (both normal and malignant) permittivities determined in our prior work over the entire frequency range. This work results in the closest match among all phantoms reported in the literature to surrogate human skin tissues. The stability of dielectric properties over time is also investigated. The phantoms demonstrate long-term stability (up to 7 months was investigated). In addition, the penetration depth of millimeter waves into normal and malignant skin phantoms is calculated. It is determined that millimeter waves penetrate the human skin deep enough (0.6 mm on average at 50GHz) to affect the majority of the epidermis and dermis skin structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.