Abstract
Ultrawideband (UWB) waveforms achieve excellent spatial resolution for better characterization of targets in tomographic imaging applications compared to narrowband waveforms. In this paper, two-dimensional tomographic images of multiple scattering objects are successfully obtained using the diffraction tomography approach by transmitting multiple independent and identically distributed (iid) UWB random noise waveforms. The feasibility of using a random noise waveform for tomography is investigated by formulating a white Gaussian noise (WGN) model using spectral estimation. The analytical formulation of object image formation using random noise waveforms is established based on the backward scattering, and several numerical diffraction tomography simulations are performed in the spatial frequency domain to validate the analytical results by reconstructing the tomographic images of scattering objects. The final image of the object based on multiple transmitted noise waveforms is reconstructed by averaging individually formed images which compares very well with the image created using the traditional Gaussian pulse. Pixel difference-based measure is used to analyze and estimate the image quality of the final reconstructed tomographic image under various signal-to-noise ratio (SNR) conditions. Also, preliminary experiment setup and measurement results are presented to assess the validation of simulation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Microwave Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.