Abstract

Flexible pressure sensors, as an essential component of E-skin, have been applied in health monitoring and human-machine interface. However, the limited measurement range hinders their applications and developments. Herein, we present a tri-mode flexible porous pressure sensor with an ultra-wide measurement range (0.91 Pa–30 MPa) based on the triboelectric effect, piezoresistive effect, and mechanoluminescent (ML) effect. The low-pressure area (0.91–450 Pa) response was realized by a single-electrode triboelectric nanogenerator, which consists of polydimethylsiloxane (PDMS) and silver nanowire (Ag NWs). The medium-pressure area (0.45–1.8 kPa) was probed by the piezoresistive sensor using Ag NWs conductive network on the porous surface. ML phosphors (SrAl2O4:Eu2+, Dy3+, SAOED) blended in the PDMS matrix of porous pressure sensor were utilized to respond to the high pressure (1 Mpa–30 MPa). This flexible pressure sensor possesses excellent stability with over 20 000, 5000, and 2000 cycles in different pressure measurement ranges, respectively. Finally, a tactile glove with the tri-mode flexible porous pressure sensor was carried out and demonstrated various responses to different pressure conditions. This ultra-wide range tri-mode flexible sensor would provide a widely adaptable platform for human-machine interactions in the internet of things.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call