Abstract

We study low-energy effective field theories for non-Fermi liquids with Fermi surfaces of general dimensions and co-dimensions. When the dimension of Fermi surface is greater than one, low-energy particle-hole excitations remain strongly coupled with each other across the entire Fermi surface. In this case, even the observables that are local in the momentum space (such as the Green's functions) become dependent on the size of the Fermi surface in singular ways, resulting in an ultraviolet/infrared (UV/IR) mixing. By tuning the dimension and co-dimension of the Fermi surface independently, we find perturbative non-Fermi liquid fixed points controlled by both UV/IR mixing and interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.