Abstract
We compare UV transient grating (TG) experiments of aqueous tryptophan with transient absorption (TA) and fluorescence up-conversion measurements. The TG and TA signals show a bi-exponential rise with sub-ps and ps time constants, which are consistent with the fluorescence studies. Using experimental data, we provide an equation for the homodyne-detected TG signal, taking into account the sub-100fs internal conversion of tryptophan after excitation. In addition, we measure a sub-100fs homogeneous electronic dephasing time for tryptophan in water by the photon echo (PE) technique. These measurements provide a consistent picture of excited state dynamics of aqueous tryptophan that may serve as a basis for coherent 2D-UV spectroscopy of biosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.