Abstract
Research on semiconductor nanowires underlies the development of the miniaturization of laser devices with low cost and low energy consumption. In general, nanowire lasers are made of direct band gap semiconductors, e.g., GaN, ZnO and CdS, and their band-edge emissions are used to achieve optically pumped laser emission. In addition to the existing class of nanowire lasers, we here show that air-annealed micrometer-sized MgO cubic crystals with well-defined facets exhibit room-temperature stimulated emission at 394 nm under pulsed laser pumping at ∼350 nm. Surface midgap states are assumed to be responsible for the excitation and emission processes. The present findings will not only provide opportunities for the development of miniaturized lasers composed of insulating oxides, but will also open up functionality in various families of cubic crystalline materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.