Abstract

The target of the presented research work was the development of new smart textiles with photoluminescence properties which maintain light emission for a prolonged time period, even when the illumination source is turned off. Phosphorescence has been frequently used to improve the reliability of various safety products. Thus, simple and photoluminescent and superhydrophobic smart cotton fibers were fabricated. Rare-earth-doped aluminate (REA) nanoparticles (NPs) were immobilized into room-temperature vulcanizing silicone rubber (RTV) and spray-coated onto cotton fibers. The coated fabrics were excited at 365 nm, while the emission peak was detected at 518 nm. Various concentrations of REA nanoparticles in the REANPs@RTV composite formula were used to create a homogeneous phosphorescent coating on the surface of the cellulosic fabrics. CIE (Commission Internationale de L’éclairage) lab values and emission spectra confirmed that the fabric had a white color under visible light, green color under UV rays, and greenish-yellow color in darkness. The lifetime of phosphorescence and decay time were examined. The findings also displayed an improvement in the superhydrophobic activity of the treated cellulosic fabrics as the phosphor content was increased in the REANPs@RTV composite formula. Additionally, the stiffness and air permeability of the treated cellulosic fabrics were determined in terms of comfort characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call