Abstract

Among extremophiles, microorganisms resistant to ultraviolet radiation (UVR) have been known to produce a variety of metabolites (i.e., extremolytes). We hypothesized that natural microbial flora on elevated land (hills) would reveal a variety of UVR-resistant extremophiles and polyextremophiles with modulated proteins and enzymes that had biotechnological implications. Microorganisms Cellulosimicrobium cellulans UVP1 and Bacillus pumilus UVP4 were isolated and identified using 16S rRNA sequencing, and showed extreme UV resistance (1.03 × 10⁶ and 1.71 × 10⁵ J/m², respectively) from elevated land soil samples along with unique patterns of protein expression under UVR and non-UVR. A broad range of cellulolytic activity on carboxymethyl cellulose agar plates in C. cellulans UVP1 and B. pumilus UVP4 was revealed at varying pH, temperature, and inorganic salt concentration. Further, the microbial strain B. pumilus UVP4 showed the basic characteristics of a novel group: polyextremophiles with significance in bioenergy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call