Abstract

Microcystins (MCs), produced by cyanobacterial blooms in eutrophic water, are common toxic metabolites and a potential threat to human health. However, the mechanism of MC photodegradation by photosensitizers in raw water remains unclear. In photodegradation and quenching experiments, this study investigates the photosensitized degradation of microcystin-LR (MC-LR) by fulvic acid (FA, a kind of dissolved organic matter with natural photosensitizing properties) under ultraviolet (UV) light irradiation. The photodegradation mechanisms of FA are also explored. The photodegradation process of MC-LR by FA was consistent with second-order reaction kinetics. The degradation rate of MC-LR in FA decreased from 80% to 55% as the pH increased from 3 to 9, because the binding ability of FA to MC-LR reduces as the pH increases. Given that FA can both inhibit and promote MC-LR degradation depending on its concentration, the optimum initial FA concentration for degrading MC-LR was determined as 9.86 mgC·L−1. The excited triplet state of FA (3FA∗) accounted for 50.12% of the MC-LR loss; the remaining loss (49.88%) was contributed by reactive oxygen species and direct photolysis. This implies that the main pathway of MC-LR degradation is reaction with 3FA∗. The MC-LR degradation rate is 36% higher under UV irradiation than that under simulated sunlight irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.