Abstract

The ultraviolet (UV) photodissociation dynamics of the jet-cooled cyclohexyl (c-C6H11) radical is studied using the high-n Rydberg atom time-of-flight (HRTOF) technique. The cyclohexyl radical is produced by the 193 nm photodissociation of chlorocyclohexane and bromocyclohexane and is examined in the photolysis wavelength region of 232-262 nm. The H-atom photofragment yield (PFY) spectrum contains a broad peak centered at 250 nm, which is in good agreement with the UV absorption spectrum of the cyclohexyl radical and assigned to the 3p Rydberg states. The translational energy distributions of the H-atom loss product channel, P(ET)'s, are bimodal, with a slow (low ET) component peaking at ∼6 to 7 kcal/mol and a fast (high ET) component peaking at ∼44-48 kcal/mol. The fraction of the average translational energy in the total excess energy, ⟨fT⟩, is in the range of 0.16-0.25 in the photolysis wavelength region of 232-262 nm. The H-atom product angular distribution of the slow component is isotropic, while that of the fast component is anisotropic with an anisotropy parameter of β ≈ 0.5-0.7. The bimodal product translational energy and angular distributions indicate two dissociation pathways to the H + C6H10 products in cyclohexyl. The high-ET anisotropic component is from a repulsive, prompt dissociation on a repulsive potential energy surface coupling with the Rydberg excited states to produce H + cyclohexene. The low-ET isotropic component is consistent with the unimolecular dissociation of hot radical on the ground electronic state after internal conversion from the Rydberg states. The similarity of the photodissociation dynamics of the cyclohexyl radical to the previously studied small linear and branched alkyls expands on the understanding of the dissociation dynamics of alkyl radicals to include larger cyclic alkyl radicals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call