Abstract

Using pulsed H-atom Lyman-alpha laser-induced fluorescence spectroscopy along with a photolytic calibration approach, absolute H-atom product quantum yields of phi(H-b13d) = (0.32+/-0.04) and phi(H-b12d) = (0.36+/-0.04) were measured under collision-free conditions for the 193 nm gas-phase laser flash photolysis of buta-1,3- and buta-1,2-diene at room temperature, which demonstrate that nascent H-atom formation is of comparable importance for both parent molecules. Comparison of the available energy fraction, f(T-b13d) = (0.22+/-0.03) and f(T-b12d) = (0.13+/-0.01), released as H+C(4)H(5) product translational energy with results of impulsive and statistical energy partitioning modeling calculations indicates that for both, buta-1,3- and buta-1,2-diene, H-atom formation is preceded by internal conversion to the respective electronic ground state (S(0)) potential energy surfaces. In addition, values of sigma(b-1,3-d-L alpha) = (3.5+/-0.2)x10(-17) cm(2) and sigma(b-1,2-d-L alpha) = (4.4+/-0.2)x10(-17) cm(2) for the previously unknown Lyman-alpha (121.6 nm) radiation photoabsorption cross sections of buta-1,3- and buta-1,2-diene in the gas-phase were determined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.