Abstract

Light-emitting molecular crystals with efficient emission behavior are crucial for fabricating low-threshold ultraviolet organic lasers. Herein, we demonstrated a rhombus microcrystal from a fluorene-based conjugated molecule (CL-1) with robust emission behavior for an ultraviolet organic laser. Due to the synergistic effect of twisted intramolecular conformation and weak π-interaction, the CL-1 single crystal showed an extremely high photoluminescence quantum yield (PLQY) of ∼82%, due to their single-molecule excitonic behavior. Considering the diverse noncovalent interactions, CL-1 molecules easily self-assembled into the rhombus microcrystals. Finally, a low-threshold ultraviolet organic laser was fabricated with a sharp emission at 379 nm, attributed to the 0-1 vibration band of a single CL-1 molecule, also further confirming the single twisted-molecule emission in crystal states. Precisely controlling the intramolecular twisted structure and intermolecular interaction of organic conjugated molecules is a precondition to obtain robust ultraviolet emission for optoelectronic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call