Abstract
Nd:YAG laser (355 nm) induced surface modifications in polylactic acid (PLA), and its composites with silver nanoparticles (AgNPs, size range between 120 and 150 nm) with and without additional melamine–formaldehyde-coated short sisal fibers were studied as a function of laser pulse numbers. The AgNP content was varied (100, 300 and 500 ppm), whereas the sisal content kept as constant (9 mass%). The PLA-based systems with a fully amorphous matrix were irradiated with 1–256 laser pulses at a constant fluence of 0.32 µJ µm−2. Changes in the irradiated surfaces were assessed and quantified by light and scanning electron microscopic pictures. Protrusion with bubbling, bubbled protrusion with cratering and crater formation with more or less bubbled ridges were found as characteristic ablation features. Bubbling was traced to entrapped gaseous products of PLA degradation, while the onset of ridges was ascribed to the melt flow of the PLA matrix caused by laser shock waves. The laser irradiation caused damage and ablation highly depended on the actual composition, which influenced the UV absorption at 355 nm, which was measured as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.