Abstract

Efficient modulation of carrier concentration is fundamentally important for tailoring the electronic and photoelectronic properties of semiconducting materials. Photoinduced doping is potentially a promising way to realize such a goal for atomically thin nanomaterials in a rapid and defect-free manner. However, the wide applications of photoinduced doping in nanomaterials are severely constrained by the low doping concentration and poor stability that can be reached. Here, we propose a novel photoinduced doping mechanism based on the external photoelectric effect of metal coating on nanomaterials to significantly enhance the achievable doping concentration and stability. This approach is preliminarily demonstrated by an MX2 (M is Mo or Re; X is S or Se) nanoflake modified through a simple process of sequentially depositing and annealing an Au layer on the surface of the flake. Under ultraviolet (UV) light illumination, the modified MX2 achieves degenerated n-type doping density of 1014 cm-2 rapidly according to the experimentally observed >104 times increment in the channel current. The doping level persists after the removal of UV illumination with a nonobservable decrease over 1 day in vacuum (less than 23% over 7 days under an ambient environment). This photoinduced doping approach may contribute a major leap to the development of photocontrollable nanoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.