Abstract

IodoHoechst 33258 sensitizes DNA to cleavage by near ultraviolet light (UV-A). Following an earlier study which showed that the UV-induced cleavage is at discrete locations corresponding to the ligand binding sites, this paper reports a more extensive analysis of the sequence specificity of cleavage. The experiments involved use of double-stranded DNA synthesised on primed M13 templates. Analysis of cleavage in a 280bp sequence in M13mp18 and a 310bp sequence in three M13mp9 clones ('alpha-32', 'alpha-82' and 'alpha-22') derived from human alpha-DNA, showed that for all of the twenty-nine strong and very strong damage sites, cleavage was at the 3' end of a run of three or more consecutive AT base pairs. The extent of cleavage was higher for sites with consecutive Ts than for consecutive As, and greatest for the sequence cTTTTca. Comparison of three closely-related alpha-DNA clones enabled assessment of single bp changes and essentially confirmed the results of detailed analysis of binding cleavage sites in mp18 and alpha-32. Decreasing the input ratio of iodoHoechst/per bp DNA from 0.13 to 0.013 altered the sequence specificity, and sites possessing only three consecutive AT bps were generally not cleaved. The contributions of both the strength of ligand binding and the efficiency of photolytic cleavage to the overall extent of cleavage by UV/iodoHoechst are discussed, in view of the potential utility of the ligand as a probe of DNA conformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.