Abstract

Characteristic laser-produced microplasma emissions from various simple carbon-containing vapors entrained in a He carrier gas have been observed and compared. A focused ArF (193-nm) excimer laser is used to induce microplasmas with modest pulse energies (15 mJ or less) in the effluent region of a gas chromatography capillary column. Strong atomic (C, H, O, Cl, and F) as well as molecular (C(2), CH, and CCI) emissions are observed with very high SNRs. A plasma emission survey indicates that different classes of molecule show unique spectra which make it relatively easy to distinguish one chemical class from another. These results suggest that a laser microplasma gas chromatography detector (LM-GCD) should offer additional discrimination/resolution for unknown sample gas mixture analysis. In addition, the LM-GCD exhibits a significant advantage over certain other GC detectors, like the widely used flame ionization detector, by readily detecting nonresponsive gases such as CO, CO(2), CCl(4) and Freons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.