Abstract

A new theory for describing the ultraviolet (UV) laser generation mechanism by frequency doubling of focused Gaussian beam in nonlinear crystal was presented. The nonlinear crystal used for UV laser generation, such as β-barium borate (BBO), has dramatically small phase matching acceptance angles Δθx and large walk-off angle ρ. Numerical simulation shows the variation of the waist of input Gaussian beam brings change in conversion efficiency and far-field transverse intensity distribution. For validating the theory, we investigated the single-pass conversion efficiency in BBO crystal by using acoustic-optic Q switched 532 nm laser; and took a photograph of fringe structure far-field intensity distribution of the UV beam. Comparison between the numerical simulation and experimental results support our theory and analysis. Our theory provides a useful tool for estimating ultraviolet laser generation processes for low power nanosecond pulsed laser and cw laser.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.