Abstract
The ultraviolet laser desorption/ionization of polyaromatic hydrocarbons (PAHs) has been investigated under different background pressures of an inert gas (up to 1.2 mbar of N2) in the ion source of a hybrid, orthogonal-extracting time-of-flight mass spectrometer (oTOF-MS). The study includes an ensemble of six model PAHs with isolated single polyaromatic cores and four ones with multiple cross-linked aromatic and polyaromatic cores. In combination with a weak ion extraction field, the variation of the buffer gas pressure allowed to control the degree of collisional cooling of the desorbed PAHs and, thus, to modulate their decomposition into fragments. The dominant fragmentation channels observed are related to dehydrogenation of the PAHs, in most cases through the cleavage of even numbers of C-H bonds. Breakage of C-C bonds leading to the fragmentation of rings, side chains and core linkages is also observed, in particular, at low buffer gas pressures. The precise patterns of the combined fragmentation processes vary significantly between the PAHs. The highest abundances of molecular PAH ions and cleanest mass spectra were consistently obtained at the highest buffer gas pressure of 1.2 mbar. The effective quenching of the fragmentation pathways at this elevated pressure improves the sensitivity and data interpretation for analytical applications, although the fragmentation of side chains and of bonds between (poly)aromatic cores is not completely suppressed in all cases. Moreover, these results suggest that the detected fragments are generated through thermal equilibrium processes rather than as a result of rapid photolysis. This assumption is further corroborated by a laser desorption/ionization post-source decay analysis using an axial time-of-flight MS. In line with these findings, covalent oligomers of the PAHs, which are presumably formed by association of two or more dehydrogenated fragments, are detected with higher abundances at the lower buffer gas pressures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.