Abstract

We have observed a sample of 14 nearby ($z \sim 0.03$) star-forming blue compact galaxies in the rest-frame far-UV ($\sim1150-2200 \AA$) using the Cosmic Origins Spectrograph on the Hubble Space Telescope. We have also generated a grid of stellar population synthesis models using the Starburst99 evolutionary synthesis code, allowing us to compare observations and theoretical predictions for the SiIV_1400 and CIV_1550 UV indices; both are comprised of a blend of stellar wind and interstellar lines and have been proposed as metallicity diagnostics in the UV. Our models and observations both demonstrate that there is a positive linear correlation with metallicity for both indices, and we find generally good agreement between our observations and the predictions of the Starburst99 models. By combining the rest-frame UV observations with pre-existing rest-frame optical spectrophotometry of our blue compact galaxy sample, we also directly compare the predictions of metallicity and extinction diagnostics across both wavelength regimes. This comparison reveals a correlation between the UV absorption and optical strong-line diagnostics, offering the first means of directly comparing ISM properties determined across different rest-frame regimes. Finally, using our Starburst99 model grid we determine theoretical values for the short-wavelength UV continuum slope, $\beta_{18}$, that can be used for determining extinction in rest-frame UV spectra of star-forming galaxies. We consider the implications of these results and discuss future work aimed at parameterizing these and other environmental diagnostics in the UV as well as the development of robust comparisons between ISM diagnostics across a broad wavelength baseline.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.