Abstract
Recent studies from our lab found that ultraviolet (UV) irradiation induces a voltage-gated potassium (Kv) channel activation and subsequently activates JNK signaling pathway resulting in apoptosis. The present study in rabbit corneal epithelial (RCE) cells is to investigate mechanisms of UV irradiation-induced Kv channel activity involving p53 activation in parallel to DNA damage-induced signaling pathway. UV irradiation-induced signaling events were characterized by measurements of JNK activation and further downstream p53 phosphorylation. UV irradiation elicited an early response in the cell membrane through activation of Kv channels to activate the JNK signaling pathway and p53 phosphorylation. Exposure of RCE cells to UV irradiation within a few min resulted in JNK and p53 activations that were markedly inhibited by suppression of Kv channel activity. However, suppression of Kv channel activity failed to prevent p53 activation induced by extended DNA damages through prolonging UV exposure time (more than 15 min). In addition, caffeine inhibited UV-induced activation of SEK, an upstream MAPK kinase of JNK, resulting in suppression of both Kv channel-involved and DNA damage-induced p53 activation. Our results indicate in these cells that UV irradiation induces earlier and later intracellular events that link to activation of JNK and p53. The early event in response to UV irradiation is initiated by activating Kv channels in the cell membrane, and the later event is predominated by UV irradiation-caused DNA damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.