Abstract
The attention toward cost-effective and high-performance H2S sensors is increasing due to the growing need for physical health and environmental monitoring. In this paper, Ag/WO3/reduced graphene oxide (rGO) nanocomposites were synthesized by using a microwave-assisted gas–liquid interfacial method. Nanomaterials with different Ag doping contents were successfully prepared with AgNO3 as an additive. The Ag/WO3/rGO sensors exhibit remarkable selectivity toward H2S, and the gas sensing performances of Ag-doped WO3/rGO gas sensors are significantly better than those of WO3/rGO. At 150 °C, the response value of the 10 wt % Ag/WO3/rGO gas sensor to 100 ppm H2S is 204.5, which is 7 times higher than that of WO3/rGO, and the response/recovery time of the sensor is 9/49 s, respectively. Additionally, the gas sensing performance of the sensor is further enhanced under ultraviolet (UV) irradiation. The response value is enhanced to 685.8, which is 3 times higher than that without UV irradiation, and the response/recovery time is reduced to 8/38 s, respectively. The sensing mechanism is also discussed. This work offers a potential application for H2S detection in environmental monitoring and smart healthcare.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.