Abstract

We numerically demonstrate an ultraviolet graphene ultranarrow absorption in a hybrid graphene-metal structure. The full-width at half maximum of the absorption band being 9 nm in ultraviolet range is achieved based on the coupling of lattice plasmon resonances of the metallic nanostructure to the optical dissipation of graphene. The position, absorbance and linewidth of the hybridized narrow resonant mode tuned by controlling geometrical parameters and materials are systematically investigated. The proposed structure possesses high refractive index sensitivity of 288 nm/RIU and figure of merit of 72, and can also be used to detect small molecules layer of sub-nanometer thickness and refractive index with small changes, providing promising applications in ultra-compact efficient biosensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.