Abstract

We consider the leading and subleading UV divergences for the four-point on-shell scattering amplitudes in the D=8 N=1 supersymmetric Yang–Mills theory in the planar limit for ladder-type diagrams. We obtain recurrence relations that allow obtaining the leading and subleading divergences in all loops purely algebraically starting from the one-loop diagrams (for the leading poles) and the two-loop diagrams (for the subleading poles). We sum the leading and subleading divergences over all loops using differential equations that are generalizations of the renormalization group equations to nonrenormalizable theories. We discuss the properties of the obtained solutions and the dependence of the constructed counterterms on the scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.