Abstract
Ho3+-doped fluoride nanophase glass ceramics have been synthesized from silica-based oxyfluoride glass. An intense white emission light is observed by the naked eye under near infrared excitation at 750nm. This visible upconversion is due to three strong emission bands in the primary color components, red, green, and blue. Besides, ultraviolet signals are also recorded upon the same excitation wavelength. The excitation mechanism of both the ultraviolet and the visible emissions is a photon avalanche process with a relatively low pump power threshold at about 20mW. The total upconverted emission intensity has been estimated to increase by about a factor of 20 in the glass ceramic compared to the precursor glass, in which an avalanche type mechanism is not generated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.