Abstract

Abstract Broad emission line outflows of active galactic nuclei have been proposed for many years but are very difficult to quantitatively study because of the coexistence of the gravitationally bound and outflow emission. We present detailed analysis of a heavily reddened quasar, SDSS J000610.67+121501.2, whose normal ultraviolet broad emission lines (BELs) are heavily suppressed by the dusty torus as a natural “coronagraph,” and thus the blueshifted BELs (BBELs) can be reliably measured. The physical properties of the emission-line outflows are derived as follows: ionization parameter , column density cm−2, covering fraction of ∼0.1, and upper limit density of cm−3. The outflow gases are located at least 41 pc away from the central engine, which suggests that they have expanded to the scale of the dust torus or beyond. Besides, Lyα shows a narrow symmetric component, to our surprise, which is undetected in any other lines. After inspecting the narrow emission line region and the star-forming region as the origin of the Lyα narrow line, we propose that the end result of outflows, diffusing gases in the larger region, acts as the screen of Lyα photons. Future high spatial resolution spectrometry and/or spectropolarimetric observations are needed to make a final clarification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.