Abstract

Purpose. To assess the influence of wavelength on retinal light damage in rat with funduscopy and histology and to determine a detailed action spectrum. Methods. Adult Long Evans rats were anesthetized, and small patches of retina were exposed to narrow-band irradiations in the range of 320 to 600 nm using a Tenon arc and Maxwellian view conditions. After 3 days, the retina was examined with funduscopy and prepared for light microscopy. Results. The dose that produced a change just visible in fundo was determined for each wavelength. This threshold dose for funduscopic damage increased monotonically from 0.35 J/cm 2 at 320 nm to 1600 J/cm 2 at 550 nm. At 600 nm, exposure of more than 3000 J/cm 2 did not cause funduscopic damage. Morphologic changes in retinas exposed to threshold doses at wavelengths from 320 to 440 nm were similar and consisted of pyknosis of photorecep tors. Retinas exposed to threshold doses of 470 to 550 nm had different morphologic appearances. Retinal pigment epithelial cells were swollen, and their melanin had lost the characteristic apical distribution. Some pyknosis was found in photoreceptors. Conclusions. Damage sensitivity in rat increases enormously from visible to ultraviolet wavelengths. Compelling evidence is presented that two morphologically distinct types of damage occur in the rat retina, depending on the wavelength. Because two types also have been described in monkey, a remarkable similarity seems to exist across species

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.