Abstract
This study was designed to investigate the biochemical mechanisms responsible for the connective tissue changes seen in actinically damaged skin, which is characterized histologically by diminution and ultrastructural alterations of collagen fibrils and deposition of elastotic material in the papillary dermis. We hypothesized that ultraviolet light could stimulate synthesis of interstitial collagenase in the skin, resulting in collagen degradation. Monolayer cultures of human fibroblasts or keratinocytes were irradiated with ultraviolet A (UVA) or ultraviolet B (UVB) radiation and interstitial collagenase or its inhibitor, TIMP (tissue inhibitor of metalloproteinases) assessed in the conditioned medium with Western immunoblots 24 h after irradiation. Northern blot analysis of the irradiated fibroblasts with a cDNA probe representing collagenase was also performed. Cell viability was greater than 90% with all doses of UV radiation studied. A dose-related increase in immunoreactive collagenase was detected in the medium of fibroblasts irradiated with 0-10 J/cm2 of UVA radiation as well as a parallel increase in the collagenase mRNA in the irradiated cells. UVA radiation stimulated collagenase synthesis in both neonatal and adult fibroblasts. TIMP production in UVA-irradiated fibroblasts increased to a lesser degree than did collagenase and its increase did not parallel the increase in collagenase. UVB (0-100 mJ/cm2) did not stimulate collagenase production by fibroblasts. In contrast to the stimulation of collagenase production by fibroblasts, a slight decrease in immunoreactive collagenase was seen in UVA-irradiated keratinocytes. These data suggest that direct stimulation of collagenase synthesis by human skin fibroblasts by UVA radiation may contribute to the connective tissue damage induced by ultraviolet radiation leading to photoaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.