Abstract

Aberrant gap junctional intercellular communication (GJIC) has been implicated in tumor development and progression. UltravioletA (UVA)-induced oxidative stress has been associated with skin carcinogenesis. We report a potential link between GJIC and the cellular stress response induced by UVA in normal human keratinocytes (NHK). In this study, UVA irradiation (10 J/cm(2)) compromised GJIC integrity in absence of cytotoxic effects as demonstrated by the absence of cell death and by the reversibility of GJIC down-regulation. Inhibition of communication by UVA was associated with hyperphosphorylation and decreased expression of connexin43 (Cx43), the most abundant gap junction protein expressed by keratinocytes. Cx43 hyperphosphorylation induced by UVA is, at least in part, mediated through mitogen-activated protein kinase (MAPK) activation as Ser279 and Ser282 sites, two downstream direct targets of p38 MAPK were found to be phosphorylated after UVA treatment. However, inhibition of p38 MAPK activity did not significantly protect from cell-cell communication inhibition because of a strong cellular cytotoxicity observed with SB202190 and SB203580, two selective inhibitors of p38 MAPK, in combination with UVA that compromises the outcome of dye transfer assay. By contrast, in Hacat cell line, inhibition of p38 activity reduced both phosphorylation and degradation of Cx43, demonstrating that these events are correlated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.