Abstract

Quantum frequency conversion of single photons between wavelength bands is a key enabler to realizing widespread quantum networks. We demonstrate the quantum frequency conversion of a heralded 1551nm photon to any wavelength within an ultrabroad (1226-1408nm) range in a group-velocity-symmetric photonic crystal fiber, covering over 150 independent frequency bins. The target wavelength is controlled by tuning only a single pump laser wavelength. We find internal, and total, conversion efficiencies of 12(1)% and 1.4(2)%, respectively. For the case of converting 1551 to 1300nm we measure a heralded g^{(2)}(0)=0.25(6) for converted light from an input with g^{(2)}(0)=0.034(8). We expect that this photonic crystal fiber can be used for myriad quantum networking tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.