Abstract

Uranium isotope ratios can provide source information for tracking uranium contamination in a variety of fields, ranging from occupational bioassay to monitoring aftereffects of nuclear accidents. We describe the development of isotope selective laser ionization spectrometry for ultratrace measurement of the minor isotopes (234)U, (235)U, and (236)U with respect to (238)U. The inherent isotopic selectivity of three-step excitation with single-mode continuous wave lasers results in measurement of the minor isotopes at relative abundances below 1 ppm and is not limited by isobaric interferences such as (235)UH(+) during measurement of (236)U. This relative abundance limit is attained without mass spectrometric analysis of the laser-created ions. Uranyl nitrate standards from an international blind comparison were used to test analytical performance for different isotopic compositions and with quantities ranging from 11 ng to 10 microg total uranium. Isotopic ratio determination was demonstrated over a linear dynamic range of 7 orders of magnitude with a few percent relative precision and detection limits below 500 fg for the minor isotopes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call