Abstract
We present a colloidal route for the synthesis of ultrathin ZrS(2) (UT-ZrS(2)) nanodiscs that are ~1.6 nm thick and consist of approximately two unit cells of S-Zr-S. The lateral size of the discs can be tuned to 20, 35, or 60 nm while their thickness is kept constant. Under the appropriate conditions, these individual discs can self-assemble into face-to-face-stacked structures containing multiple discs. Because the S-Zr-S layers within individual discs are held together by weak van der Waals interactions, each UT-ZrS(2) disc provides spaces that can serve as host sites for intercalation. When we tested UT-ZrS(2) discs as anodic materials for Li(+) intercalation, they showed excellent nanoscale size effects, enhancing the discharge capacity by 230% and greatly improving the stability in comparison with bulk ZrS(2). The nanoscale size effect was especially prominent for their performance in fast charging/discharging cycles, where an 88% average recovery of reversible capacity was observed for UT-ZrS(2) discs with a lateral diameter of 20 nm. The nanoscale thickness and lateral size of UT-ZrS(2) discs are critical for fast and reliable intercalation cycling because those dimensions both increase the surface area and provide open edges that enhance the diffusion kinetics for guest molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.