Abstract

An innovative ultrathin two-dimensional (2D) Fe-doped cobaltous oxide (Fe-CoO) coated quartz crystal tuning fork (QCTF) was introduced for the purpose of developing a low-cost photoelectric detector with a simple configuration. The enhancement mechanism of the piezoelectric signal in the ultrathin 2D Fe-CoO-coated QCTF detector is assumed to be the synergetic photocarrier transfer and photothermal effect of ultrathin 2D Fe-CoO. The ultrathin 2D nanosheet structure of Fe-CoO with a large specific surface area can efficiently absorb and convert light into heat in the QCTF, and the photocarrier transfer from the Fe-CoO nanosheet to the electrode of the QCTF contributes to the enhancement in electricity given the shortened diffusion distance of carriers to the surfaces of the 2D nanosheet. Finite element modeling was adopted to simulate the thermoelastic expansion and mechanical resonance of the QCTF with 2D Fe-CoO coating to support experimental results and analyses. Moreover, the effects of 2D Fe-CoO on the performance of QCTF-based photoelectric detectors were investigated. This Letter demonstrates that ultrathin 2D materials have great potential in applications such as costly and tiny QCTF detectors, light sensing, biomedical imaging, and spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.