Abstract

Photocatalytic H2 evolution coupled with organic transformation provides a new avenue to cooperatively produce clean fuels and fine chemicals, enabling a more efficient conversion of solar energy. Here, a novel two-dimensional (2D) heterostructure of ultrathin ZnIn2S4 nanosheets decorated with amorphous nickel boride (Nix-B) is prepared for simultaneous photocatalytic anaerobic H2 generation and aromatic aldehydes production. This ZnIn2S4/Nix-B catalyst elaborately combines the ultrathin structure advantage of the ZnIn2S4 semiconductor and the cocatalytic function of Nix-B. A high H2 production rate of 8.9 mmol h-1 g-1 is delivered over the optimal ZnIn2S4/Nix-B with a stoichiometric production of benzaldehyde, which is about 22 times higher than ZnIn2S4. Especially, the H2 evolution rate is much higher than the value (2.8 mmol h-1 g-1) of the traditional photocatalytic half reaction of H2 production with triethanolamine as a sacrificial agent. The apparent quantum yield reaches 24% at 420 nm, representing an advanced photocatalyst system. Moreover, compared with traditional sulfide, hydroxide, and even noble metal modified ZnIn2S4/M counterparts (M = NiS, Ni(OH)2, Pt), the ZnIn2S4/Nix-B also maintains markedly higher photocatalytic activity, showing a highly efficient and economical advantage of the Nix-B cocatalyst. This work sheds light on the exploration of 2D ultrathin semiconductors decorated with novel transition metal boride cocatalyst for efficient photocatalytic organic transformation integrated with solar fuel production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.