Abstract

1D nanowires of 2D layered crystals are emerging nanostructures synthesized by combining van der Waals (vdW) epitaxy and vapor-liquid-solid (VLS) growth. Nanowires of the group IV monochalcogenide germanium sulfide (GeS) are of particular interest for twistronics due to axial screw dislocations giving rise to Eshelby twist and precision interlayer twist at helical vdW interfaces. Ultrathin vdW nanowires have not been realized, and it is not clear if confining layered crystals into extremely thin wires is even possible. If axial screw dislocations are still stable, ultrathin vdW nanowires can reach large twists and should display significant quantum confinement. Here it is shown that VLS growth over Bi catalysts yields vdW nanowires down to ≈15nm diameter while maintaining tens of µm length. Combined electron microscopy and diffraction demonstrate that ultrathin GeS nanowires crystallize in the orthorhombic bulk structure but can realize nonequilibrium stacking that may lead to 1D ferroelectricity. Ultrathin nanowires carry screw dislocations, remain chiral, and achieve very high twist rates. Whenever the dislocation extends to the nanowire tip, it continues into the Bi catalyst. Eshelby twist analysis demonstrates that the ultrathin nanowires follow continuum predictions. Cathodoluminescence on individual nanowires, finally, shows pronounced emission blue shifts consistent with quantum confinement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call