Abstract

Topological insulators exhibit great potential in the fields of electronics and semiconductors for their gapless surface states. Intriguingly, most topological insulators are possibly excellent microwave-absorbing materials because of easy adjustment of electrical transport based on conducting surface states in the nanostructure. Herein, topological insulator Bi2Te3 nanosheets are synthesized by a simple solvothermal method. The material demonstrates a unique dielectric behavior based on conducting surface states, resulting in excellent microwave-absorbing performance. Benefiting from the outstanding impedance matching, Bi2Te3 nanosheets exhibit an ultrathin microwave absorption with the qualified frequency bandwidth of 3.0 GHz at only 0.77 mm thickness, which is thinner than other absorbers in reported references. Moreover, a strong reflection loss of -41 dB at 0.8 mm is achieved. The result provides a new approach for developing ultrathin microwave absorption materials at the submillimeter scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call