Abstract

We investigated Ta2O5 films grown by chemical vapor deposition of Ta(N(CH3)2)5 and O2 both bare and SiOxNy-passivated Si(100) using x-ray photoelectron spectroscopy, time-of-flight secondary-ion-mass spectroscopy (TOF-SIMS), and electrical measurements. The SiOxNy-passivated layer was formed by nitric oxide exposure to the Si substrate. Chemical composition of the Ta2O5 films is strongly dependent on the oxygen flow rate during film deposition; lower carbon levels and higher O/Ta ratios are observed for the films grown at higher O2 flow rates. A corresponding leakage current decrease is observed for the films grown at a high O2 flow rate. Compared to Ta2O5 films deposited on bare Si(100), the films deposited on SiOxNy-passivated layers show better electrical properties; with smaller equivalent thickness (Δteq∼6 Å), one order of magnitude lower leakage current was measured. TOF-SIMS data indicate that SiOxNy layers (∼9 Å) incorporate some oxygen during Ta2O5 deposition; however, regions where x=2, y=0 were not detected. Postdeposition annealing of Ta2O5/SiOxNy samples results in displacement of N by O in SiOxNy layers and oxidation of the Si substrate, forming SiO2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call