Abstract

This paper describes ultrathin tantalum-based high-volumetric-density power capacitors with low leakage properties for 1–10-MHz frequency applications. Nanodielectrics with low-defect density were grown on nanoporous tantalum anodes using the self-limiting anodization process. The fundamental mechanisms that govern the film growth and quality were investigated to provide anodization process guidelines. Conducting polymer nanoparticles were used as the cathodes. Complete filling of conducting polymer was achieved by the optimization of conducting polymer application process. Energy dispersive spectroscopy and structural SEM studies were performed to investigate the morphology and structure of the tantalum pentoxide films. The fabricated capacitor showed 0.6–0.8 $\mu \text{F}$ /mm2 of capacitance density in the 1–10-MHz range, in substrate-compatible ultrathin ( $ ) form factors. This is the highest volumetric density reported for such thin-film capacitors in a megahertz frequency range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.